\(\int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx\) [664]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 114 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {a A \sqrt {a^2+2 a b x+b^2 x^2}}{6 x^6 (a+b x)}-\frac {(A b+a B) \sqrt {a^2+2 a b x+b^2 x^2}}{5 x^5 (a+b x)}-\frac {b B \sqrt {a^2+2 a b x+b^2 x^2}}{4 x^4 (a+b x)} \]

[Out]

-1/6*a*A*((b*x+a)^2)^(1/2)/x^6/(b*x+a)-1/5*(A*b+B*a)*((b*x+a)^2)^(1/2)/x^5/(b*x+a)-1/4*b*B*((b*x+a)^2)^(1/2)/x
^4/(b*x+a)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {784, 77} \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {\sqrt {a^2+2 a b x+b^2 x^2} (a B+A b)}{5 x^5 (a+b x)}-\frac {a A \sqrt {a^2+2 a b x+b^2 x^2}}{6 x^6 (a+b x)}-\frac {b B \sqrt {a^2+2 a b x+b^2 x^2}}{4 x^4 (a+b x)} \]

[In]

Int[((A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/x^7,x]

[Out]

-1/6*(a*A*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(x^6*(a + b*x)) - ((A*b + a*B)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*x^5*
(a + b*x)) - (b*B*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(4*x^4*(a + b*x))

Rule 77

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && N
eQ[b*e + a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && Rational
Q[a, b, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])

Rule 784

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \frac {\left (a b+b^2 x\right ) (A+B x)}{x^7} \, dx}{a b+b^2 x} \\ & = \frac {\sqrt {a^2+2 a b x+b^2 x^2} \int \left (\frac {a A b}{x^7}+\frac {b (A b+a B)}{x^6}+\frac {b^2 B}{x^5}\right ) \, dx}{a b+b^2 x} \\ & = -\frac {a A \sqrt {a^2+2 a b x+b^2 x^2}}{6 x^6 (a+b x)}-\frac {(A b+a B) \sqrt {a^2+2 a b x+b^2 x^2}}{5 x^5 (a+b x)}-\frac {b B \sqrt {a^2+2 a b x+b^2 x^2}}{4 x^4 (a+b x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.43 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {\sqrt {(a+b x)^2} (3 b x (4 A+5 B x)+2 a (5 A+6 B x))}{60 x^6 (a+b x)} \]

[In]

Integrate[((A + B*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/x^7,x]

[Out]

-1/60*(Sqrt[(a + b*x)^2]*(3*b*x*(4*A + 5*B*x) + 2*a*(5*A + 6*B*x)))/(x^6*(a + b*x))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 2.

Time = 0.53 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.30

method result size
default \(-\frac {\operatorname {csgn}\left (b x +a \right ) \left (15 B b \,x^{2}+12 A b x +12 a B x +10 a A \right )}{60 x^{6}}\) \(34\)
gosper \(-\frac {\left (15 B b \,x^{2}+12 A b x +12 a B x +10 a A \right ) \sqrt {\left (b x +a \right )^{2}}}{60 x^{6} \left (b x +a \right )}\) \(44\)
risch \(\frac {\left (-\frac {B b \,x^{2}}{4}+\left (-\frac {A b}{5}-\frac {B a}{5}\right ) x -\frac {a A}{6}\right ) \sqrt {\left (b x +a \right )^{2}}}{x^{6} \left (b x +a \right )}\) \(44\)

[In]

int((B*x+A)*((b*x+a)^2)^(1/2)/x^7,x,method=_RETURNVERBOSE)

[Out]

-1/60*csgn(b*x+a)*(15*B*b*x^2+12*A*b*x+12*B*a*x+10*A*a)/x^6

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.24 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {15 \, B b x^{2} + 10 \, A a + 12 \, {\left (B a + A b\right )} x}{60 \, x^{6}} \]

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/x^7,x, algorithm="fricas")

[Out]

-1/60*(15*B*b*x^2 + 10*A*a + 12*(B*a + A*b)*x)/x^6

Sympy [F]

\[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=\int \frac {\left (A + B x\right ) \sqrt {\left (a + b x\right )^{2}}}{x^{7}}\, dx \]

[In]

integrate((B*x+A)*((b*x+a)**2)**(1/2)/x**7,x)

[Out]

Integral((A + B*x)*sqrt((a + b*x)**2)/x**7, x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 375 vs. \(2 (75) = 150\).

Time = 0.22 (sec) , antiderivative size = 375, normalized size of antiderivative = 3.29 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2}} B b^{5}}{2 \, a^{5}} + \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2}} A b^{6}}{2 \, a^{6}} - \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2}} B b^{4}}{2 \, a^{4} x} + \frac {\sqrt {b^{2} x^{2} + 2 \, a b x + a^{2}} A b^{5}}{2 \, a^{5} x} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} B b^{3}}{2 \, a^{5} x^{2}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} A b^{4}}{2 \, a^{6} x^{2}} - \frac {9 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} B b^{2}}{20 \, a^{4} x^{3}} + \frac {7 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} A b^{3}}{15 \, a^{5} x^{3}} + \frac {7 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} B b}{20 \, a^{3} x^{4}} - \frac {2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} A b^{2}}{5 \, a^{4} x^{4}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} B}{5 \, a^{2} x^{5}} + \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} A b}{10 \, a^{3} x^{5}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} A}{6 \, a^{2} x^{6}} \]

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/x^7,x, algorithm="maxima")

[Out]

-1/2*sqrt(b^2*x^2 + 2*a*b*x + a^2)*B*b^5/a^5 + 1/2*sqrt(b^2*x^2 + 2*a*b*x + a^2)*A*b^6/a^6 - 1/2*sqrt(b^2*x^2
+ 2*a*b*x + a^2)*B*b^4/(a^4*x) + 1/2*sqrt(b^2*x^2 + 2*a*b*x + a^2)*A*b^5/(a^5*x) + 1/2*(b^2*x^2 + 2*a*b*x + a^
2)^(3/2)*B*b^3/(a^5*x^2) - 1/2*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*A*b^4/(a^6*x^2) - 9/20*(b^2*x^2 + 2*a*b*x + a^2
)^(3/2)*B*b^2/(a^4*x^3) + 7/15*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*A*b^3/(a^5*x^3) + 7/20*(b^2*x^2 + 2*a*b*x + a^2
)^(3/2)*B*b/(a^3*x^4) - 2/5*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*A*b^2/(a^4*x^4) - 1/5*(b^2*x^2 + 2*a*b*x + a^2)^(3
/2)*B/(a^2*x^5) + 3/10*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*A*b/(a^3*x^5) - 1/6*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*A/(
a^2*x^6)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.68 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=\frac {{\left (3 \, B a b^{5} - 2 \, A b^{6}\right )} \mathrm {sgn}\left (b x + a\right )}{60 \, a^{5}} - \frac {15 \, B b x^{2} \mathrm {sgn}\left (b x + a\right ) + 12 \, B a x \mathrm {sgn}\left (b x + a\right ) + 12 \, A b x \mathrm {sgn}\left (b x + a\right ) + 10 \, A a \mathrm {sgn}\left (b x + a\right )}{60 \, x^{6}} \]

[In]

integrate((B*x+A)*((b*x+a)^2)^(1/2)/x^7,x, algorithm="giac")

[Out]

1/60*(3*B*a*b^5 - 2*A*b^6)*sgn(b*x + a)/a^5 - 1/60*(15*B*b*x^2*sgn(b*x + a) + 12*B*a*x*sgn(b*x + a) + 12*A*b*x
*sgn(b*x + a) + 10*A*a*sgn(b*x + a))/x^6

Mupad [B] (verification not implemented)

Time = 10.04 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.38 \[ \int \frac {(A+B x) \sqrt {a^2+2 a b x+b^2 x^2}}{x^7} \, dx=-\frac {\sqrt {{\left (a+b\,x\right )}^2}\,\left (10\,A\,a+12\,A\,b\,x+12\,B\,a\,x+15\,B\,b\,x^2\right )}{60\,x^6\,\left (a+b\,x\right )} \]

[In]

int((((a + b*x)^2)^(1/2)*(A + B*x))/x^7,x)

[Out]

-(((a + b*x)^2)^(1/2)*(10*A*a + 12*A*b*x + 12*B*a*x + 15*B*b*x^2))/(60*x^6*(a + b*x))